
Rapid Authoring of Task Knowledge for Training and Performance Support

John L. Mohammed
Stottler Henke Associates, Inc.

San Mateo, CA
mohammed@stottlerhenke.com

Barbara Sorensen
Air Force Research Laboratory

Mesa, AZ
Barbara.Sorensen@mesa.afmc.af.mil

James Ong & Jian Li
Stottler Henke Associates, Inc.

San Mateo, CA
ong@stottlerhenke.com

li@stottlerhenke.com

ABSTRACT

Intelligent tutoring systems evaluate student performance and provide coaching and feedback during and/or after
exercises. Intelligent job aids help users execute procedures by providing step-by-step instructions. These systems
use computable task representations that specify appropriate actions at each step. These knowledge representations
must be expressive enough to enable detailed, context-sensitive guidance and feedback, handle the wide range of
situations and anomalies that might occur, and accurately assess the various possible actions the student might take.
Yet, these representations must also enable easy and rapid knowledge entry and maintenance of large collections of
procedures and training scenarios.

This paper describes an intelligent job aid and integrated simulation-based tutoring system developed for the Air
Force to help satellite operators carry out complex command plans. These systems use hierarchical, object-oriented
task representations that enable rapid authoring by non-programmers while supporting sophisticated job aiding and
student performance evaluation. For example, the tutoring scenario editor enables the instructor to create an initial
solution template by demonstrating a correct sequence of actions. The instructor can generalize this template, so the
tutoring system can recognize alternate orderings of actions, alternative sets of actions that accomplish the same
task, and conditional actions that are appropriate in certain situations.

The job aid helps users execute procedures by presenting step-by-step instructions using HTML-formatted text and
graphics, hyperlinks, and embedded graphical user interface components. It enables gradual automation by
presenting instructions to the operator for some steps while automating other steps by computing values, interpreting
data, recommending actions, and sending and receiving information with other systems and databases. Looping and
branching enable the software to execute some steps repeatedly or only when certain conditions are true. A
graphical overview of the steps’ hierarchical organization and flow-of-control helps operators and procedure authors
quickly review and understand the procedure and maintain context during execution.

ABOUT THE AUTHORS

John Mohammed is a project manager at Stottler Henke. His research focuses on the application of artificial
intelligence to space operations. His research for the US Air Force and NASA spans intelligent job aiding,
simulation-based intelligent tutoring, model-based reasoning, automated anomaly resolution, fault diagnosis and
recovery, and automated planning and scheduling of space-based systems. Dr. Mohammed led the design of an
intelligent job aid and authoring tool designed to help US Air Force satellite operators execute complex command
plans quickly and accurately. He also led the design of a software toolkit for rapidly developing scenario-based
simulators and intelligent tutoring systems for satellite operations and other technical training areas. Before coming
to Stottler Henke, Dr. Mohammed was a computer scientist at Schlumberger Palo Alto Research and the Fairchild
Laboratory for Artificial Intelligence. Dr. Mohammed received a PhD in Computer Science from Stanford
University. He has published 13 papers in refereed journals and conference proceedings.

Barbara Sorensen is a senior research scientist, US Air Force Research Laboratory Program manager and strategic
advisor to USAF for the design and development of basic, exploratory and applied training research programs in
advanced aircrew, command and control, and space training and simulation research. She designs and
develops instructional and training technology across government, industry and academia for advanced biomedical,
survivability and space-based capabilities and to support information and battle-space dominance, air superiority,
mission rehearsal, distributed mission training, situational awareness, and modeling and simulation.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2005 2. REPORT TYPE

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Rapid Authoring of Task Knowledge for Training and Performance
Support

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory,Mesa,AZ,85212

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

James Ong is a researcher and group manager at Stottler Henke. His work focuses on intelligent tutoring systems
in areas such as undersea acoustic analysis, NASA payload operations, and satellite operations. He also leads the
development of software that enables rapid review and exploration of multivariate, time-oriented data using high-
density, interactive, graphical displays. James has held engineering, engineering management, applied research, and
marketing positions at Stottler Henke, AT&T Bell Laboratories, Bolt Beranek and Newman, and Belmont Research.
James received an MS degree in electrical engineering and computer science from U.C. Berkeley, an MS degree in
computer science (artificial intelligence) from Yale University, and an MBA from Boston University.

Jian Li is a software engineer at Stottler Henke. He led the implementation of an intelligent job aid and authoring
tool that provides step-by-step guidance and partial automation to support satellite operations and other procedural
and semi-procedural tasks. He also led the implementation of a scenario-based intelligent tutoring system and
authoring tool for technical training, as well as high-density graphical data display components for reviewing
multivariate, time-oriented data. He has also contributed to the development of training and education systems that
teach helicopter piloting and math problem-solving.

Rapid Authoring of Task Knowledge for Training and Performance Support

John L. Mohammed
Stottler Henke Associates, Inc.

San Mateo, CA
mohammed@stottlerhenke.com

Barbara Sorensen
Air Force Research Laboratory

Mesa, AZ
Barbara.Sorensen@mesa.afmc.af.mil

James Ong & Jian Li
Stottler Henke Associates, Inc.

San Mateo, CA
ong@stottlerhenke.com

li@stottlerhenke.com

INTRODUCTION

Increasingly, military and commercial satellite
systems are employing constellations of satellites in
low earth orbit (LEO) for communications and
remote sensing. Satellite system management is
complicated by the large number of satellites to be
managed and the brief time windows when each
satellite is visible to ground communication sites
during which communication can take place.
Therefore, it is essential that operators make the best
use of every opportunity to communicate with each
satellite as it comes into view. Electronic job aids
can help operators execute complex procedures more
quickly and reliably by generating and presenting
step-by-step instructions and by automating steps
when appropriate. In addition, extensive simulation-
based training with instructional feedback can
prepare students with repeated practice and exposure
to a wide range of nominal and off-nominal
situations.

This paper describes an electronic job aid and a
simulation-based intelligent tutoring system
developed by the authors to support satellite
operations and other complex procedural tasks. These
systems rely on computable task representations that
specify appropriate actions at each step. These task
representations must be expressive enough to enable
detailed, context-sensitive guidance and feedback,
handle the wide range of situations and anomalies
that might occur, and accurately assess the many
possible actions the student might take. Yet, they
must also enable easy and rapid knowledge entry and
maintenance of large collections of procedures and
training scenarios.

SCENARIO-BASED INTELLIGENT
TUTORING

The advantages of scenario-based training are well
known (Schank, 1995). The student practices
performing tasks in a realistic simulation of the
operational environment, receives exposure to a
variety of nominal and unusual situations, and gets an

opportunity to see how classroom knowledge is
applied in context. Simulated scenarios are also a
critical part of evaluating student performance for
certification.

Intelligent tutoring systems (ITSs) can significantly
improve the effectiveness of scenario-based training
by providing instructional feedback that helps
students learn from their experiences more reliably.
ITSs can track the student’s progress during the
execution of a training scenario. They can be
configured to give in situ coaching during exercises
such as hints and detailed instructions for what to do,
how to do it, and why. ITSs can also assess the
student’s actions, identify areas of strong and weak
performance and provide feedback after the student
completes the scenario. ITSs enable each student to
receive individualized training that would normally
require the full attention of a human tutor -- without
requiring one instructor per student. ITSs also enable
the student’s training to proceed at a pace that is
suitable for that particular student. By reducing the
need for specialized equipment and team members
during training exercises, it can also provide
increased flexibility regarding when and where
training takes place.

Intelligent tutoring systems (ITSs) encode and apply
the subject matter teaching expertise of experienced
instructors to provide students with individualized
instruction automatically. For procedural skills such
as executing satellite command plans, this expertise
includes task knowledge that enables the ITS to
evaluate the appropriateness of the students’ actions
and assess their knowledge and skills.

To support training for satellite operations and other
procedural tasks, we enhanced a tutoring system and
authoring tool called the Task Tutor Toolkit that was
originally developed for NASA to support remote
payload operations and other technical training areas
(Ong and Noneman, 2000). This system encodes
task knowledge as scenario-specific solution
templates that encode allowable sequences of actions
for each scenario.

During each exercise, the simulator uses the tutoring
system’s application programming interface (API) to
notify the tutoring system of each student action.
The simulator also provides query access to
simulation state variable values that the tutor can
consider when determining the appropriateness of
each student action. Each action is encoded as a tuple
that specifies the type of action and zero or more
parameters. For example, setting the oven
temperature to 300 degrees might be represented as:

 (set-control “temperature” 300)

In this example, set-control is the type of action. Two
parameters, “temperature” and 300 specify the type
of control and the setting, respectively.

Hinting

At each step, the student can request hints by pressing
buttons in the tutoring system window:
• Give me a hint – The tutoring system provides

an indirect hint that helps the student determine
an appropriate next action to take.

• What do I do? – The tutoring system
recommends an appropriate action.

• How do I do that? – The tutoring system
describes how the student should carry out the
recommended action using the simulator.

• Why do I do that? – The tutoring system
explains why the recommended action should be
taken. This explanation may be scenario-
specific, or it may describe general principles
associated with the recommended action.

Evaluating Student Actions

The tutoring system evaluates each action by
comparing it with the scenario's solution template.
After each action taken by the student, the system
displays whether the student’s action was:·
• Expected - the action matches an action pattern

in the solution template, and the student has
already carried out all prerequisite actions that
should precede this action. For example, an
action pattern might match the setting of the
temperature control to any value between 290
and 310 degrees.

• Unexpected - the action does not match any
action pattern in the solution template, or the
action has already been carried out, or not all
prerequisite steps have been carried out. When a
student carries out an unexpected action, that
action may change the state of the simulated
world in a way that invalidates the template’s

expectations for appropriate next steps. In these
situations, the solution template may become
invalid, and the tutoring system may no longer
be able to assess subsequent student actions.

• Continuable – the action is unexpected but
benign, so the action did not change the state of
the simulated world in a way that invalidated the
solution template’s expectations. The student can
proceed with the scenario, and the tutor can
continue to rely on the solution template to
correctly evaluate subsequent actions.

• Incorrect - the action and current simulation
state match an action pattern and simulation
condition, if any, specified within an error rule.

Instructional Strategies for Procedural Training

By classifying each student action into one of these
categories, the tutoring system can support several
different instructional strategies. For example, a tutor
could accept only expected and continuable actions
and reject unexpected and incorrect actions by
notifying the student and then instructing the
simulator to undo the last action. Or, a tutor could
accept all types of actions. Because the solution
template’s expectations might have been invalidated
by an inappropriate action, however, the tutor would
not be able to assess the subsequent actions reliably.
However, as long as the simulation is able to behave
realistically in response to subsequent actions, this
instructional approach still gives students an
opportunity to realize their mistake and experience
their effects. For example, experiencing the
simulated loss of a satellite due to operator error can
be a motivating and memorable learning experience.
Afterwards, the tutor could ask questions that prompt
the student to reflect on his or her actions to figure
out when the error was made, what the correct action
should have been, and what the impact of the error
was on the satellite or ground systems.

Figure 1 - The tutoring system enables the student to

ask for context-sensitive hints during exercises

Task Representations for Tutoring

A key design issue for any tutoring system is the
manner in which task knowledge is represented, or
encoded, in a computable format that can be
interpreted by the software. The task representation
must be expressive enough to enable the tutor to
assess each action and distinguish appropriate actions
from inappropriate ones, even when there is more
than one correct set of actions for a given scenario.
The representation must also enable the tutoring
system to assess the student’s knowledge and skills
and provide useful coaching and feedback during and
after each exercise. Finally, the representation must
enable rapid and intuitive knowledge entry by subject
matter experts so that tutoring scenarios can be
created easily and economically, without complex
programming.

We chose to encode each solution template as a
hierarchy of simple task nodes and group task nodes
that represent the set of possible sequences of student
actions that are appropriate for a scenario. Each
simple task node recognizes a correct student action.
It specifies:
• an action pattern that specifies the action type

and constraints on its parameters. An action is
expected (and appropriate) if its type matches
that action pattern’s type and its parameters
satisfy the action pattern’s constraints.

• an optional simulation state condition that
specifies constraints on the values of simulation
state variables that must be satisfied in order for
the task node’s action to be active and enabled
for matching against incoming student actions.

• optional principles (typically, specific skills or
pieces of knowledge) that are demonstrated
when the student carries out an action that
matches the action pattern when the node’s
simulation state condition is satisfied, and

• optional text strings that are displayed when the
student requests the various types of hints
associated with each step.

Each group task node contains:
• one or more simple task nodes and/or lower level

group task nodes, and
• zero or more principles that are demonstrated

when the student carries out all of the actions
that are recognized by the simple task nodes and
sub-group task nodes in the group.

Demonstrating, Generalizing, and Annotating
Tutoring Scenarios

Instructors and subject matter experts (scenario
authors) use the simulator to first demonstrate one
(of possibly many) correct sequence of actions for the
scenario. The tutoring scenario editor records these
actions to create an initial solution template that
recognizes this exact set of actions performed in
order.

Scenario authors then use the tutoring scenario editor
to generalize this solution template so that it
recognizes other valid sequences of actions. For
example, the author can relax constraints on the
action’s parameters by specifying multiple valid
values or ranges of numeric values. The author can
relax ordering constraints by specifying that the
actions in a group of actions can be carried out in any
order.· Or, the author can specify alternate sub-
sequences of actions within a solution template. This
feature enables the tutoring system to determine
when the student carries out one of the several
possible ways of performing a task within a scenario.
Authors can also specify conditional actions that are
appropriate only when certain simulation state
conditions are true, expressed as a Boolean
expression that refers to simulation state variables
and, optionally, the action’s parameters.

Authors then annotate the solution template by
associating principles with actions or groups of
actions. This enables the tutoring system to assign
credit to the student for principles he or she appears
to know when the action or group of actions is
carried out.

INTELLIGENT JOB AIDS

Currently, document-based procedures or command
plans present step-by-step instructions that guide
satellite and ground station operators through the
execution of satellite contacts. The main advantage of
this approach is that the documents can be produced
by non-programmers using familiar word processing
software. A limitation of this approach is that the
documents can only present instructions to the
operator, but they cannot actually help the operator
execute those instructions. The operator is still
responsible for operating the mission operations
software, by navigating its screens, requesting and
interpreting information, performing calculations,
constructing and issuing commands; and determining
the appropriate next step in the document to execute.

Electronic job aids have the potential for reducing
operator errors and increasing execution speed.

Some satellite operations systems use scripts to
execute procedures or commands automatically. This
approach works best when complete automation is
feasible and algorithms exist that can assess the
situation and make correct decisions in all situations.
When this is not true, some operator control (or at
least active participation) is necessary so that the
operator can apply his or her knowledge and
judgment to the situation. In these situations, the
software and the operator share responsibility for
carrying out the procedure, so it is necessary for the
job aid software to present and prompt for
information using effective user interfaces. In
addition, the job aid must provide a scripting
capability that complements rather than replaces the
operator’s judgment and skills.

An Intelligent Job aid for Procedural Tasks

We developed an intelligent job aid and authoring
tool called TaskGuide to enable the Air Force to
create and edit computable procedure specifications
that help users carry out complex procedural tasks
quickly and accurately. The job aid is comprised of a
Procedure Execution Tool that is used by operators to
run procedures and a Procedure Editor that is used
by procedure authors to create and edit procedures.

The Procedure Execution Tool’s user interface shown
below contains three window panes. The Procedure
Summary Pane in the upper left area provides a
graphical summary of the steps and their hierarchical

organization to help operators and authors quickly
browse and understand the procedure and keep track
of where they are in the procedure during execution.

The Node Details Pane at right shows instructions for
the step that is currently selected in the Procedure
Summary Pane (during browsing) or the step that is
currently being executed. It presents each step’s
instructions using HTML-formatted text, graphics,
input controls, hyperlinks, and interactive graphical
user interface components. Input controls such as text
fields, check boxes, radio buttons, and selection lists
prompt the operator for data, decisions, and requests.
The job aid stores user input values in variables, so
they can be referenced in calculations and test
conditions in downstream steps and groups.
Hyperlinks make additional information easily
available on demand to augment each step’s
instructions. Instructions can also embed arbitrary
graphical user interface components, implemented
using the Java programming language and software
libraries. This capability makes it possible to
incorporate sophisticated, application-specific
interactive displays.

After completing each step, the user presses the green
arrow button to advance to the next step. The
Procedure Execution Tool then determines and
displays the appropriate next step according to the
procedure’s branching and looping logic. The
Execution Log Pane in the lower left area lists each
step that has been executed.

Figure 2 - The Procedure Execution Tool summarizes the procedure in the
upper left pane and shows details of the selected step in the right pane.

The Procedure Summary Pane displays an icon and
label for each step and group of steps. Different
icons represent different types of groups and steps as
shown in the tables below.

 Interactive Automated

Simple Step
Exit Step

Simple Group

Branching Group

Loop Group

Table 1 – Icons for each type of step node and group
node in the procedure summary pane

Each simple step presents instructions or other types
of information to the user and optionally prompts the
user for input. An exit step has an exit condition that
determines how the job aid advances to the next step.
If the condition is true, the job aid exits from the
group that contains the exit step. Otherwise, it
advances to the next step in the usual way.
Branching groups contain steps that are executed
only if a test condition is true, and loop groups are
executed repeatedly while a test condition is true.

The Procedure Summary Pane exploits the
hierarchical organization of the task representation to
present a graphical summary of the procedure that
supports browsing, so operators can rapidly become
familiar with (or refresh their memory of) the
procedure. This pane uses indentation to show that a
step or group lies within a higher-level group, similar
to the way the Windows Explorer file browser
displays files and folders. If a group icon is
collapsed, the group’s children are hidden. To
expand a group and show its children, operators
double-click on the group node’s icon.

Operators can select a step or group by clicking on its
icon. The details of the selected step or group are
then displayed in the Step Details Pane. By reviewing
higher-level groups before expanding them to see the
details of lower-level groups and individual steps,
operators can quickly browse large, complex
procedures and understand the procedure’s overall
organization and logic before delving into its details.

The Procedure Summary Pane also helps the operator
maintain context. During execution of a procedure,
the TaskGuide Procedure Summary Pane highlights
the current step being executed by displaying its icon
and the background of its short description green.

Levels of Automation

The level of automation that is appropriate for a
particular operation depends on several factors. First,
automation of an operation requires that a reliable
algorithm has been designed that correctly retrieves
and interprets relevant information, makes decisions
based on that information, and executes correct
decisions in all situations. Automation is not feasible
if the job aiding system cannot access some of the
relevant data. For example, some of the relevant
information might reside in the heads of other
personnel, accesssible only via verbal
communications. Or, some data that is ordinarily
accessed by an operator using the user interface of a
satellite operations system might not be available to a
software system via inter-systems communication,
due to a lack of systems integration. For some
operations, even if an algorithm can perform well in
nominal cases, human judgment and experience may
be required to perform the operation correctly in
exceptional cases, so reliable automation might not
be possible in all situations.

For these reasons, it may be desirable to automate
some operations in a procedure and rely on manual
execution or manual review/override for others. In
addition, over time, it may be possible to automate
more and more of the operations within a procedure
as reliable automation algorithms are developed and
become trustworthy. Thus, is it highly desirable that
any electronic job aid system for satellite operations
be able to support varying levels of automation in a
procedure and enable automation to be introduced
gradually into a procedure to provide complete
control over the degree of automation employed.

Our job aid supports three levels of automation. In
manual execution mode, the job aid reduces operator
workload by determining the appropriate step to carry
out and by presenting instructions for the current step
to the operator. Dynamically-generated instructions
can further reduce the operator’s cognitive load by
presenting succinct instructions that are specific to
the current situation, rather than static instructions
that are necessarily more verbose so they can cover
all possible situations.

The second mode is manual review and override. In
this mode, the job aid automatically determines the
next actions to be performed and describes this action
to the operator so that the operator can accept or
modify the action before it is executed.

The third mode is automatic execution. In this mode
the job aid automatically performs the action required
by the step without interaction with the operator.

Automated actions can include simple calculations
based on data recorded by the operator or retrieved
automatically from other components of the mission
operations software, automated decision support
(such as resource re-planning to contend with
contingencies), and automated invocation of
operations supported by the mission operations
software. A single procedure can use all levels of
automation. Some operations within the procedure
may require manual operation, while others may use
manual review/override or automated execution.

Task Representations for Job Aiding

When designing the system’s task representations, we
decided that they should resemble the step-by-step
instructions as they are commonly presented in the
Air Force’s document-based command plans. This
resemblance enables the job aid to support largely
manual operations carried out by the operator by

presenting step-by-step instructions like document-
based instructions, when desired. Second, the task
representation should enable the specification of
queries, calculations, and commands to automate
operations as deemed appropriate by the Air Force
for each command plan. We achieved this goal by
enabling calculations, or script-like program
statements, to be run at the beginning and at the end
of each step. A third goal was that the job aid should
be able to communicate each step’s instructions and
provide additional information on demand in the
most effective manner. Finally, the task
representation should employ features of modern
programming languages, such as hierarchical
grouping of steps, conditional branching logic, and
looping logic, to help procedure authors specify
procedures that are understandable, error-free, and
easily browsed using the Procedure Editor and
Procedure Execution Tool.

Figure 3 – The Job Aid Procedure Editor presents an overview of the procedure in the left pane and

enables editing of the selected step or group in the right pane

Procedure Editor

A procedure specification encodes step-by-step
instructions and execution logic as a list of steps,
organized within a hierarchy. Each step contains
HTML-formatted instructions that tell the operator
what to do or prompt the operator for input. Steps can
also present optional verifications that tell the user
how to confirm successful completion of the step, as
well as notes that describe conditions that must be
maintained or avoided during the step, cautions and
warnings, and other types of additional information.
Authors can associate each note with a single step or

with a group of steps. When a note associated with a
group is displayed for the first time, a colored icon
next to the note indicates that the note is new. When
the note is displayed within later steps in the group, a
gray icon indicates that the note has been displayed
within previous steps.

The Procedure Editor shown above enables
procedure authors to create procedure specifications
that are executed by the Procedure Execution Tool.
The left pane contains tabbed windows that display
the procedure’s steps and groups, along with the
variables and functions that can be used within the

procedure. The right pane enables authors to edit the
step or group that has been selected in the left pane.

Each step’s instructions and verifications can either
be static (canned) or it can be generated dynamically.
A procedure can contain a mix of static and
dynamically-generated instructions. In general,
however, most instructions in a procedure
specification are static and present the same
information each time the procedure is executed.
Procedure authors specify the content and format of
static instructions as text and HTML tags. The
Procedure Editor provides wizards that help authors
create lists, tables, text fields, input controls, and
other types of HTML tags.

Authors can specify dynamically-generated
instructions by embedding expressions within the
instruction’s HTML text. During execution, the
Procedure Execution Tool generates the instruction
dynamically by evaluating each embedded expression
and replacing it with its value. Expressions can
contain references to variables whose values are
entered by the user, received from external systems
and databases during procedure execution, or derived
from other variables using calculations. Compared to
static instructions, dynamically-generated
instructions can filter information to present
instructions that are more succinct and targeted to the
specific situation. They can also generate
recommendations and compute default values for
input parameters based on data already gathered.

Steps can also contain calculations that evaluate
expressions containing constants, variables, and
function calls and save these values in variables.
These variable values can be used within calculations
in downstream steps to send/receive data to/from
other systems and databases, analyze and interpret
this data, recommend actions to be taken by the user,
or select and execute actions automatically. Pre-
calculations execute at the beginning of each step
(pre-calculations), before instructions are presented
to the user. This is useful for retrieving and
computing data or text strings so they can be
embedded within dynamically-generated instructions.
Post-calculations execute at the end of the step, after
the user has followed the step’s instructions, entered
data, and indicated completion. This is useful for
interpreting, processing, saving, or acting upon the
user’s inputs. Post-calculations can also contain
error-checking statements that verify the user’s input.
If the input fails error-checking, the job aid reprompts
the user for input by displaying the step’s instructions
and input controls again. Calculations can invoke
standard math, Boolean, and string operations as well
as arbitrary Java methods, enabling complex decision

support and interoperability with general purpose and
application-specific software libraries.

Each step can be either interactive or automated. If
the step is interactive, the job aid performs the step’s
pre-calculations (if any), presents the next step’s
instructions to the user, waits for the user to indicate
completion of the step, and then performs the step’s
post-calculations (if any). If the step is automated,
the job aid performs the step’s calculations without
displaying instructions or interacting with the user.

The job aid supports gradual procedure automation,
so manual steps within procedures can be replaced,
over time, with steps that retrieve data, compute
values, and carry out actions automatically. The
procedure author can specify the desired level of user
awareness and override capability for each step. For
example, an interactive step could use calculations to
compute a default parameter value or decision and
prompt the user to confirm or override it. As
confidence in the reliability and robustness of the
calculation increases, the organization could replace
the interactive step with an automated step that uses a
computed value or decision to perform an action
without user intervention. In this manner, a manual
procedure can evolve into a more automated one.

The job aids extensible architecture enables
integration with both general purpose and
application-specific software libraries that provide
functions that are invoked by calculations. This
architecture enables procedure specifications to
incorporate arbitrarily complex automated data
retrieval, interpretation, automated reasoning and
decision-making algorithms. For example, optional
systems integration with the satellite missions
operations system would enable the procedure’s
calculations to receive data from the mission
operations system and help the operator interpret this
data, make decisions, construct satellite commands,
and send these commands to the mission operations
system for uploading and execution.

TaskGuide
procedure
execution tool

Satellite
Mission
Operations
System

Optional
systems

integration

Operator

TaskGuide
procedure
editor

TaskGuide
procedures

Procedure
author

TaskGuide
procedure
execution tool

Satellite
Mission
Operations
System

Optional
systems

integration

Operator

TaskGuide
procedure
editor

TaskGuide
procedures

Procedure
author

Figure 4 – Job aid data flow

INTEGRATED JOB AIDING AND
SIMULATION-BASED TUTORING

We developed an integrated training system that
combines a satellite operations simulator, the job aid,
and the tutoring system. As shown in Figure 5,
graphical editors enable entry and editing of tutoring
scenarios and procedure specifications.

We developed a software framework for rapidly
developing partial, scenario-specific simulations of
the mission operations software, the ground station
hardware and software and the satellite. The
simulations are partial in that they only implement
the parts of the simulated software’s graphical user
interface (GUI) that are relevant to each scenario.
Screenshots of the actual mission operations software
provide a realistic look, and interactive controls are
overlaid on the screenshots only for those GUI

controls that will be acted upon by the student during
the scenario or that must display scenario-specific
data that changes over the course of the scenario.

TaskSim
Simulator

TaskGuide
procedure

execution tool

Task Tutor
Toolkit ITS

Trainee
actions

Trainee
actions

Trainee

SimBionic sim
behavior editor

Simulation
behaviors

Task Tutor Toolkit
scenario editor Tutoring

scenarios
(solution
templates)

TaskGuide
Editor

Procedure
specificationsProcedure

author

Instructor

Instructor or
sim developer

TaskSim
Simulator

TaskGuide
procedure

execution tool

Task Tutor
Toolkit ITS

Trainee
actions

Trainee
actions

TraineeTrainee

SimBionic sim
behavior editor

Simulation
behaviors

Task Tutor Toolkit
scenario editor Tutoring

scenarios
(solution
templates)

TaskGuide
Editor

Procedure
specificationsProcedure

author

Instructor

Instructor or
sim developer

Figure 5 - Integrated simulation-based tutor and job

aid data flow

Figure 6 - Rapid development of scenario-specific simulations is enabled by using screen captures of
the satellite operations system’s user interface and selective implementation and overlay of the user

interface controls that are likely to be used during the scenario

In general, it is costly and difficult to specify how a
simulation of a complex system behaves in response
to arbitrary student actions and other events. Our
system avoids this problem by employing scenario-
specific simulation behavior models that are valid
only within a narrower envelope of the situations that

are likely to occur during a given scenario, rather
than any possible action or event. This approach
makes it possible to quickly create scenario-specific
simulations that respond realistically to those actions
the student is likely to perform. This actions include
correct actions as well as incorrect actions that are

common or can be anticipated. A graphical editor
enables scenario authors to quickly specify
simulation behaviors as flow chart-like hierarchical
behavior transition networks.

PRELIMINARY EVALUATION AND

FUTURE WORK

The system was presented and demonstrated to 10
satellite operations instructors at Vandenberg AFB in
February 2005. The reaction of the participants to
the software was generally positive. During the
presentation and demonstration, the instructors
identified enhancements to the software that they felt
were the most important for acceptance of the
software for operations and training.

Six participants filled out an evaluation questionnaire
comprised of 22 questions that prompted each
respondent to rate the usefulness or usability of
various aspects of the knowledge editors and run-
time systems for the job aid, tutoring system, and
training simulation. The average rating for all
questions and respondents was 3.9 on a scale of 1
(hard to use, not effective or intuitive) to 5 (easy to
use, very effective or intuitive). 98% of the ratings
were between 3 and 5. Average ratings across the
three systems were comparable, ranging from 3.65
for the simulation development tool, 3.88 for the job
aid, and 4.08 for the tutoring system.

The questionnaires also prompted the respondents for
open-ended comments regarding the most-
useful/beneficial features, the most needed
enhancements, and barriers to operational use. Most
comments were positive regarding the software’s
capabilities and ease-of-use.

The respondents also identified additional job aid
capabilities that might be needed to support
operational use, such as:
• Flexible execution: the software should enable

the operator to adapt procedure execution to
accommodate anomalies and correct errors in
real time, even in ways that are not anticipated in
the procedure specification. For example, this
might include backing up to redo parts of a
procedure, skipping parts.

• Rapid recovery from software/hardware
failure: the software should be able to quickly
resume execution of a procedure interrupted by
failure of the hardware/software running the
software in order to ensure highly available
monitoring and control of the satellite.

• Incremental persistent store: the software
should incrementally save a record of each step’s
execution in a persistent store, such as a
database, to support recovery and review of the
procedure’s execution log.

We have also identified other promising candidate
enhancements to the job aid, such as integration with
the site-specific workflow methods and software
infrastructure; the ability to help operators keep track
of elapsed time, time windows, and deadlines during
procedure execution; and support for multi-person
procedures.

We also identified potentially useful enhancements to
the tutoring system. Currently, if the student carries
out an unexpected action that is not benign, the
solution template can no longer be assumed to
accurately represent the next possible actions that the
student should carry out. This is because non-benign
unexpected actions may have altered the state of the
world in a way that renders the solution template
invalid. However, in many cases, it is possible to
recover from an unexpected action by carrying out
one or more additional actions that restore the state of
the world so that procedure execution can proceed.
To support recovery from unexpected actions that are
not benign, it would be desirable to enhance the
tutoring system to support recoverable actions.
When the student performs a recognized recoverable
action, the tutoring system can inform the student and
guide him or her through a set of steps that recover
from this action. This feature would enhance the
realism and naturalness of the simulation-based
exercise.

RELATED WORK

Studies show that individualized instruction provided
by intelligent tutoring systems are highly effective.
However, a barrier to their widespread use is the cost
and difficulty of encoding the subject matter and
instructional expertise used by the tutoring software,
especially when “deep” representations of the task
are used, such as full-blown planning-style
representations (e.g. Sacerdoti, 1977; Rickel, et al.,
2000), and cognitive models in production-system
formats (e.g. Anderson, et al., 1990) that enable the
tutor to act as an expert system in the task area.
Scenario-specific task representations avoid the
complexity and expertise needed to build an expert
system (Murray, 1998). Authoring specific scenarios
allows for focus on situations and decision points that
are judged to be particularly important, and for highly
tuned student assessment and instructional
interventions. For example, Guralnik (1996)
describes an authoring tool that applies a content

theory of procedural task knowledge, enabling the
tutoring system to generate replies to important
questions from the student. The work described in
this paper builds upon prior work in software tutors
for procedural training by us (Ong and Noneman,
2000) and others (Guralnik, 1996). Specifically, we
enhanced the expressiveness of the task
representations used by the tutor with constructs such
as conditional actions, alternate actions, and
continuable actions while striving to keep the task
representations simple enough to be authored by non-
programmers using graphical tutoring scenario
editors.

There have been a number of systems developed to
assist or automate the execution of procedural tasks.
Most of these systems automate task execution by
providing specialized scripting languages. For
example, Timeliner (Busa, 2002) was developed by
Draper Laboratories as a tool to automate procedural
tasks on the International Space Station. These tasks
may be sequential tasks that would typically be
performed by a human operator, or precisely ordered
sequencing tasks that allow autonomous execution of
a control process. However, Schwarz et al claim that
a combination of automation, fully-manual control,
and human supervisory control generally yields the
optimum level of automation in terms of system
reliability and life cycle costs, including up-front
development and operations costs.

Our approach differs in its focus on supporting
partially-automated procedure specifications that
combine sophisticated information presentation and
user interface capabilities for interactive operations
with scripting for automated operations. This
approach provides greater flexibility and control over
each procedure’s use of automation and the division
of labor between the operator and the software.

OTHER APPLICATIONS

This tutoring system and job aid can also be used to
provide training and performance support for other
technical tasks in which the number of appropriate
ways of carrying out each task is limited. For
example, these systems can help maintenance
technicians diagnose and repair equipment, and they
can help people operate equipment, use software
applications, or perform tasks in compliance with
organizational guidelines and procedures.

ACKNOWLEDGEMENTS

This research was supported in part by Air Force
Research Laboratory contract F33615-02-C-6063.

REFERENCES
Anderson, J.R., Boyle, C.F., Corbett, A. T., & Lewis,

M.L. (1990). Cognitive Modeling and Intelligent
Tutoring. Artificial Intelligence 42(1): 7--49.

Busa, J., E. Braunstein, R. Brunet, R. Grace, T. Vu
and R. Brown. (2002) Timeliner: Automating
Procedures on the ISS. SpaceOps, Houston, TX,
October 9-12, 2002. Sponsored by AIAA.

Guralnik, D. (1996) An Authoring Tool for
Procedural-Task Training”. PhD Dissertation -
Technical Report #71. The Institute for the
Learning Sciences, Northwestern University.

Murray, T. (1998). Authoring Knowledge Based
Tutors: Tools for Content, Instructional Strategy,
Student Model, and Interface Design, Journal of
the Learning Sciences, 7(1).

Ong, J and S. Ramachandran. (Feb 2000). Intelligent
Tutoring Systems: The What and the How.
Learning Circuits on-line magazine. Web:
http://www.learningcircuits.org/2000/feb2000/ong.
html.

Ong, J., S. Noneman (November 2000), Intelligent
Tutoring Systems for Procedural Task Training of
Remote Payload Operations at NASA,
Proceedings of the Industry/Interservice, Training,
Simulation & Education Conference (I/ITSEC
2000).

Rickel, J., Ganeshan, R., Rich, C., Sidner, C.L., &
Lesh, N. (2000). Task-Oriented Tutorial Dialog:
Issues and Agents. Mitsubishi Electric Research
Laboratories Technical Report TR-2000-37.

Sacerdoti, E.D. (1977). A Structure for Plans and
Behavior. American Elsevier, New York.

Saito, T., Ortiz, C., Mithal, S., & Loftin, R.B. (1991).
Acquisition, Representation and Rule Generation
for Procedural Knowledge, Proceedings of the
Second CLIPS Conference, NASA/JSC, Houston,
TX.

Schank, R. (1995). What We Learn When We Learn
by Doing. Technical Report no. 60, Institute of
Learning Sciences, Illinois.

Swartout, M., Kitts, C., & Batra, R., “Persistence-
Based Production Rules for On-Board Satellite
Automation”.

Schwarz, R., Kuchar, C., Hastings, D., Deyst, J.,
Kolitz, S., A Probabilistic Model for the
Determination of the Effects of Automation of
Satellite Operations on Life Cycle Costs. Web:
http://www.mit.edu/~jkkuchar/munich/munich.html

